
International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 214
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Roadmap for Effective Regression
Testing

Aman Hooda1, Prof. Satpal Panwar2

Abstract: Testing is the best mean to predict software quality. Conducting regression testing is a challenging task
especially for the large scale softwares which include a variety of operating modes. Even more challenging is the
fact when to conclude it. The effectiveness of regression testing process depends upon number of bugs found and
fixed before the software is re-released to the customer. This in turn largely depends largely upon the test cases
generated, test case minimization, selection and order in which they are executed. Various parameters such as
different process elements, application policy and execution time along with other factors influence the success of
regression testing. This paper discusses the maintenance testing including regression testing to describe a framework
to carry effective regression testing.

Keywords: software maintenance, regression testing, prioritization, bugs, test cases.

——————————  ——————————

1 Introduction

Computers are used commercially for more than sixty years.
Evolutions of computers have shown the trend from slow and
mechanical to fast and more sophisticated device with
increased computational power with their prices decreasing
drastically. This improvement in the speed and cost were
possible because of several technological breakthroughs which
occurred at regular intervals. There is probably no discipline
that does not use computers now. Further with increased use of
computers, the complexity of these systems also increases.

The more powerful a computer is more sophisticated programs
it can run [1]. With the increased capabilities of computers,
software engineers have been able to solve large and complex
problems in cost effective and efficient ways. Software
engineers have gracefully coped up w ith building large,
complex and innovated software systems learning from their
past experiences. All these innovative experiences have given
rise to the discipline of software engineering.

1.1 Emergence of software engineering discipline: The
evolution of electronic computers began in the 1940’s. At
that time efforts in the field of computing were focused
on designing hardware as there was essentially no
operating system. With the evolution of second
generation machines in 1950’s concept of operating
system emerged and single user operating system came
into existence and few high level languages such as
FORTRAN and COBOL were also developed. There was
a shift towards problem solving.

Aman Hooda is currently pursuing PhD in Computer Science
& engineering in B.M.U, Rohtak India. E-
mail: amandagar67@gmail.com
Sat Pal is currently working as professor in B.M.U, Rohtak
India. E-mail: palsat777@gmail.com

With the introduction of multiprogramming operating
systems in early 1960’s, the usability and efficiency of
computers took a big leap. Software engineers from
writing simple programs started developing software
systems which were much larger in scope and required
great effort by many people. The techniques for writing
simple programs could be scaled up for developing
software systems and the computing world found itself in
the midst of a “Software Crisis”.

1.2 Notable changes in software development practices:
There exists big gap between an exploratory style of
software development and effort based on s oftware
engineering practices. A few major are mentioned as
below-

1.2.1 Exploratory style software development is based on
the principle of “error correction” (build & f ix),
Whilesoftware engineering principles emphasizes on
“error prevention”. In exploratory style , errors are
detected only during the final product testing where
as in engineered approach the product is developed
through well-defined stages such as requirement
specification, analysis & designing, coding &
implementation, testing etc. and attempts are made
to detect and fix bugs in the same phase in which
they are detected.

1.2.2 In exploratory style, main attention was paid to
coding phase where as in case of engineered
approach each phase wasemphasized for producing
correct intermediate products.

IJSER

http://www.ijser.org/
mailto:amandagar67@gmail.com
mailto:palsat777@gmail.com

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 215
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

1.2.3 A lot of attention is paid to requirement gathering
phase to collect exact, correct, sufficient and
unambiguous requirements. Collection of incorrect
and incomplete requirements may result into rework
at later stages.

1.2.4 A distinct design phase with standard techniques
applied is regular feature of engineered approach
which was otherwise missing from exploratory style
of development.

1.2.5 Regular reviews are carried out at all the stages of
the development phases which were restricted to
final stages in exploratory style of programming.

1.2.6 Software testing is now considered as important
umbrella activity and many standard testing
techniques available.

1.2.7 There exists better visibility of the product through
various phases with strict entry and exit criteria
for each phase with well-defined intermediate
products.

1.2.8 Now a day’s software projects are properly planned.
The primary objective of planning is to ensure that
various activities take place and finish at correct
time within the requisite budget.

1.2.9 Several metrics have been developed to measure
product as well as process quality to help in
improving the quality of both process and product.

1.2.10 In view of changing requirements, market
conditions, host modifications, organizational
changes etc., awell-defined maintenance phase
must be planned for future.

2 Software Evolution Framework

It is a conceptual and hierarchical abstraction which
provides a layout for software evolution. This scheme is
not concerned with “why” the changes take place or
“who” lead the changes. Instead it deals with other non-
trivial aspect of changes. These factors intuit how, when,
what and where the software has changed. The taxonomy
of evolution is based on nature of consideration called as
dimensions [8].These dimensions determine and
characterize the evolution mechanism. Each of these
dimensions will be placed under four types of logical
groups as mentioned (i) Temporal properties (ii) System
propertied (iii) Object of changes (iv)Change support.

2.1 Temporal Properties - Theseproperties specify the time
aspect of when evolution began and its frequency of
occurrence. Various dimensions of temporal properties
are time change, change history, change frequency,
anticipation [8].
2.1.1Time Change depicts at what instance of time the
change occurs. Accordingly the time change dimensions
may be specified into three different instances as static,
load time and dynamic.
2.1.2Change Historyrefers to archive of changes made to
the software along with supporting versioning tool.
2.1.3Change Frequency refers to time interval or gap
after which the software undergoes
modifications.Accordingly it may be periodically,
continuous or random (arbitrarily).

2.1.4Anticipation describes a f oreseen change(s) which
may occur at early stage of development thus reducing
the effort of implementing changes as compared to an
unanticipated change.

2.2 Object of Change - It describes the exact location of
where the changes are to be made [8]. Object of change
further requires certain supporting mechanism as mentioned
below-

2.2.1 Artifactsrepresents all the documents which need to
be updated as a result of enhancements.
2.2.2 Granularity represents degree to which existing
module is changed. It may fine and coarse.
2.2.3 Impact of change determines the range of impacted
artifacts.
2.2.4 Change propagation identifies the spam where the
non-local artifacts are affected or different level of
abstraction.

2.3 System Properties:These properties indicate of what
different parts it is composed of [8]. Various dimensions for
describing system properties are

2.3.1Availability refers to whether the system is
permanently or occasionally available.
2.3.2Activeness refers to whether the system is actively or
proactively evolved.
2.3.3Openness refers to how open and close the system is
to new extensions.
2.3.4Safety is a feature to distinguish between static and
dynamic safety.

2.4 Change Support:These properties describe “how” the
evolution took place [8]. Various dimensions of change
support are-

2.4.1Degree of automation it is a feature which
differentiates between fully automated, partially
automated or manual change.
2.4.2 Degree of formality represents nature and extent of
formal methods used during evolution.
2.4.3Change type identifies the changes occurred during
evolution as either structured or semantic.

3 Software maintenance testing

Software engineering aims at developing quality software
using engineered approach. This is different from earlier
conventional approach which believed in manufacturing
software like any other engineering products. As defined in
ISTQB glossary terms (standard glossary terms ver2.0),
Maintenance testing is “testing the changed to an operational
system or the impact of a changed environment to an
operational system”. The essence of maintenance testing is to
ensure that maintenance applied to the system does not cause
failures.

 Usually maintenance testing consists of two part of the system
once integration takes place.

First one is, verifying the changes that has been made
because of the correction in the system or if the system is
extended or some enhancement has been done to it.Second

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 216
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

one is regression testing to prove that the system has not been
affected by the maintenance work.

3.1Change Verification:
Whenever a change is introduced into the system, it must be
tested both in isolation and as a part of the system, once
integration has taken place. For testing individual modules, it
is likely that stubs and drivers are used to create framework
or harness to test it. When the change is subsequently
incorporated into the full system, a regression test suite must
be run to ensure that no new bugs have been introduced and
no existing problem has been left unattended.

3.2 The Challenges of Maintenance Testing:
 Maintenance testing is applied to software systems that are in
place and are in use, and perhaps have been in use for years,
has its own set of challenges. Further the development team
and maintenance team are never same for any system thus
making maintenance even for cumbersome and
challenging.Various challenges are:

 The software may be poorly documented or the
documentation may have gone missing.

 The relationships that exist within the application
and various dependencies.

 The resource constraint makes maintenance even
more challenging.

 Deciding what is important to test.

3.3 Maintenance Activities:

IEEE provides a framework for sequential maintenance
process activities. It can be used in iterative manner and can be
extended so that customized items and processes can be
included [7].

Figure 1: Maintenance Activities

These activities go hand-in-hand with each of the following
phase:

3.3.1 Identification & Tracing - It involves activities
pertaining to identification of requirement of modification or
maintenance, along with type of maintenance required. It is
usually generated by user or system may itself report via logs
or error messages.

3.3.2 Analysis - The modification is analyzed for its impact on
the system including safety and security implications. If
probable impact is severe, alternative solution is looked for. A
set of required modifications is then materialized into
requirement specifications. The cost analysis of
modification/maintenanceand estimation is concluded.

3.3.3 Design - New modules to be added and modules which
need to be replaced or modified, are designed against
requirement specifications set in the previous stage. Test cases
are created for validation and verification.

3.3.4 Implementation - The new modules are coded with the
help of structured design created in the design step.Every
programmer is expected to do unit testing in parallel to verify
the module.

3.3.5 System Testing - Integration testing is done among
newly created modules and between new modules and the
system. Finally the system is tested as a whole, followed
byregressive testing procedures.

3.3.6 Acceptance Testing - After testing the system, it is
tested for acceptance with the help of users. If at this state,
user complaints some issues they are addressed or noted to
address in next iteration.

3.3.7 Delivery - After acceptance test, the system is deployed
all over the organization either by small update package or
fresh installation of the system. The final testing takes place at
client end after the software is delivered.

3.3.8 Maintenance management - Configuration
management is an essential part of system maintenance. It is
aided with version control tools to control versions, semi-
version or patch management.

3.4 Types of maintenance
According to IEEE Standard Glossary of Software
Engineering Terminology, IEEE Std. 729-1983, IEEE
Press,1983, Maintenance falls into the following four
categories[7]:

3.4.1 Adaptive maintenance:Modification of a software
product performed after delivery to keep a computer program
usable in a changed or changing environment.

3.4.2 Corrective maintenance:Reactive modification of a
software product performed after delivery to correct
discovered faults.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 217
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3.4.3 Emergency maintenance:Unscheduled corrective
maintenance performed to keep a system operational.

3.4.4 Perfective maintenance:Modification of a software
product after delivery to improve performance or
maintainability.

4 Regression testing

No matter how well the system is conceived and tested before
being released, software will necessarily be modified in order
to fix bugs or enhanced in accordance with changes in user
specifications. Regression testing is an expensive, but
important process.

 Unfortunately, there may be insufficient resources to allow for
the reexecution of all test cases during regression testing [6].
Regression testing must be conducted to confirm that recent
program changes have not adversely affected existing features
and new tests must be conducted to test new features [4].

 Regression testing may be defined as “Re-testing” of a
previously tested program following modification to ensure
that FAULTS have not been introduced or uncovered as a
result of the changes made. The purpose of regression testing
is to determine if the system (and the quality of system) has
“regressed” following a change.

The process of regression testing can depicted as following:

Figure 2 The Regression Testing Process

In general there is two type of regression testing strategy

(i) The first one is to“rerun” all the test cases
again.

(ii) Second is to analyze the influence domain
based on the software and then design the
regression test cases.

The advantage of first strategy is that it is more effective in
finding the bugs. The disadvantage being it is too expensive
and generally no software organization can afford it. On the
other hand, the advantage of second strategy is that it is less
costly with disadvantage of poor accuracy of qualitative
analysis. In large the second strategy in regression testing is
the one which is practiced in general.

For making regression more effective, regression tests can be
categorized as: i) Targeted Tests, which ensure that important
current customer features are still supported adequately in the
new release and ii) Safety Tests, which are risk-directed, and
ensure that potential problem areas are properly handled[19].

4.1 Parameters for Effective regression Testing

4.1.1The Application policy: The application policy decides at
what time interval or gap regression testing has to be done.
Accordingly it may be (i) periodic execution (daily, weekly,
monthly) or (ii) Rule based execution (after all changes, after
changing critical components, or at final release).

4.1.2 The Execution Time: The execution time decides at
what time regression testing has to be initiated. According it
may be after minor changes or major changes.

4.1.3 Process Elements: Various process factors such as time
and resource constraint affect regression testing process.
Usually the regression is done in constrained environment and
tester has no choice except to limit their testing effort.

4.2 MajorFactors effecting Effective Regression
Testing

4.2.1 Documentation: Most of the systems are poorly
documented. The development team and maintenance team in
almost all the projects are not same and hence demand for
extra effort on part of maintenance team thus resulting in
increased maintenance costs.

4.2.2 Dead code: It is a common phenomenon. Dead code
represents unnecessary, inoperative code that can be removed
without affecting the system functionality. Dead code leads to
excessive use of memory, slower execution, untested code and
hidden bugs. Dead code must be identified and eliminated
before starting regression testing.

4.2.3 Cloned code: While enhancing the software, the
developers copy and customize the existing pieces of code.
The disadvantage of this approach is that the bugs are copied
as well and further replicates if further modifications are done.

4.2.4 Focused Test Activities:Most conventional method for
regression testing is “retest all” method which is but obvious
quite expensive as compared with other techniques. So, the
testers must focus on modified parts and parts affected by
modification to reduce regression testing time and save
substantial cost.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 218
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

4.3 Selection of test cases for effective regression
testing

Nightly/daily building and smoke testing" have become
widespread since they often reveal bugs early in the software
development process. During these builds, software is
compiled, linked, and (re)tested with the goal of validating its
basic functionality.Regression test selection techniques select a
subset of valid test cases from an initial test suite (T) to test
that the affected but unmodified parts of a program continue to
work properly. Regression test selection essentially consists of
two major activities [3]:

– Identification of the affected parts - This involves
identification of the unmodified parts of the program that are
affected by the modifications [3].

– Test case selection - This involves identification of a subset
of test cases from the initial test suite T which can effectively
test the unmodified parts of the program. The aim is to be able
to select the subset of test cases from the initial test suite that
has the potential to detect errors induced on account of the
changes [3].

An RTS technique should be designed to scale from small to
very large programs and should take into account all possible
relationships depending on the targeted class of programs
while selecting test cases, i.e., t should be a safe technique for
that class of programs.

4.4 Framework for Effective Regression Testing

For carrying out regression testing in an effective way
following steps can be followed:

Figure 3 Framework for effective regression testing

4.4.1 Test selection based on modification: The very basic
objective of regression testing is to gain confidence that recent
modifications done to a program hasn’t modified its existing
features adversely. To achieve this

4.4.2 Additional Test selection by minimization: After
verifying the modified code portion of a code, the test suite for
regression testing can further be reduced by applying some
sophisticated techniques such as relevant Slicing[] and other
minimization methods.

4.4.3 Prioritization of Test cases: prioritization is the process
of arranging the test cases of given test suite in such an order
that if test cases are run in arranged pattern, it tends to find
more bugs using nominal resources thus implementing
regression testing in an efficient manner.

5 Conclusion:Every software system is bound to require
maintenance. Regression testing is the essence of maintenance
phase and is not easy to carry out as it sounds. To test every-
thing is rarely possible. Further the time required and
resources commitment required makes it impractical.A
comprehensive regression testing would require covering
every possible combination and permutation of conditions and
data. For effective regression testing, framework suggested
must be applied considering all factors and parameters
influencing it, thus permitting the testers to run as many tests
as possible as permitted by time and budget.

6 References:

[1] Sommerville Ian, Software Engineering,6th ed., Pearson

Education,2004.

[2] S. Elbaum, A. Malishevsky, and G. Rothermael “Test case

prioritization: A family of empirical studies”. IEEE
Transactions on Software Engineering, vol. 28, NO.2,
pages 159-182,Feb.2002.

[3] Biswas, S and Mall, R. “Regression Test Selection
Techniques: A Survey.” Informatica 35, pages 289-
321,2011.

[4] Bo Qu ; Southeast Univ., Nanjing ; ChanghaiNie
; BaowenXu ; Xiaofang Zhang “Test Case Prioritization
for Black Box Testing”, Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st
Annual International (Volume:1) Page(s): 465 – 474.

[5] Memon, A. ; Dept. of Comput. Sci., Maryland Univ.,

College Park, MD, USA ; Banerjee, I. ; Hashmi, N.
; Nagarajan, A. DART: a framework for regression
testing "nightly/daily builds" of GUI
applications Software Maintenance, 2003. ICSM
2003.Proceedings. International Conference
on Page(s):410 – 419.

[6] Zheng Li , Harman, M., Hierons, R.M. “Search Algorithms

for Regression Test Case Prioritization” Software
Engineering, IEEE Transactions on (Volume:33 , Issue:
4) 225 - 237 April 2007.

[7] IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std. 729-1983, IEEE Press,1983.

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bo%20Qu.QT.&searchWithin=p_Author_Ids:37532695200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Changhai%20Nie.QT.&searchWithin=p_Author_Ids:37661647400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Baowen%20Xu.QT.&searchWithin=p_Author_Ids:37276983200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaofang%20Zhang.QT.&searchWithin=p_Author_Ids:37675599000&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4290962
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4290962
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4290962
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Memon,%20A..QT.&searchWithin=p_Author_Ids:37267758900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Banerjee,%20I..QT.&searchWithin=p_Author_Ids:38202788400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hashmi,%20N..QT.&searchWithin=p_Author_Ids:38202263500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nagarajan,%20A..QT.&searchWithin=p_Author_Ids:37267762900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8742
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8742
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8742
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zheng%20Li.QT.&searchWithin=p_Author_Ids:37291778800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Harman,%20M..QT.&searchWithin=p_Author_Ids:37275655700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hierons,%20R.M..QT.&searchWithin=p_Author_Ids:37284112400&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4123321
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4123321

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 219
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[8] O MohdYusop and S Ibrahim, “Evaluating Software
Maintenance Testing Approaches to Support Test Case
Evolution”. International Journal on N ew Computer
Architectures and Their Applications (IJNCAA) 1(1): 74-
83, 2011.

[9] Roger S Pressman, Software Engineering, 5th ed.,2001.

[10]Shyam S. Pandeya, Anil K. Tripathi “ Testing
Component-Based Software: What It has to do with
Design and Component Selection ” , Journal of Software
Engineering and Applications, 2011, 1, 37-47.

[11] Wu Ye, Dai Pan, Mei- Hwa Chen “Techniques for testing
component based software Engineering of complex
Computer Systems, 2001 Proceedings, seventh IEEE
International Conference, pg 222-232.

 [12] William E. Perry, “Effective Methods for Software

Testing.” 2nd edition, Wiley Computer Publishing,2000.

 [13]Anido R, Cavalli AR, Lima Jr LP, Yevtushenko N. Test
suite minimization for testing in context. Software
Testing, Verification and Reliability 2003; 13(3):141–
155.

 [14] Bryce RC, Colbourn CJ. Prioritized interaction testing for

pair-wise coverage with seeding and constraints. Journal
of Information and Software Technology 2006;
48(10):960–970.

 [15]Qu X, Cohen MB, Woolf KM. Combinatorial interaction

regression testing: A study of test case generation and
prioritization. Proceedings of IEEE International
Conference on Software Maintenance (ICSM 2007),
IEEE Computer Society Press, 2007; 255–264.

 [16]Qu X, Cohen MB, Rothermel G. Configuration-aware

regression testing: an empirical study of sampling and
prioritization. Proceedings of the ACM International
Symposium on Software Testing and Analysis (ISSTA
2008), ACM Press, 2008; 75–86.

 [17] P. C Jorgensen, Software Testing a Craftsman’s

Approach. CRC Press, 1995.

[18] B. Beizer, Software Testing Techniques 2nd Edition,
International Thomson Computer Press, 1990.

[19] Y Chen, R C. Probert, D. Paul Sims, “Specification based
regression test Selection with Risk Analysis”, ’02
Proceedings of the 2002 Conference of the Centre for
Advanced Studies on Collaborative Research.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 220
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

IJSER

http://www.ijser.org/

	3.4 Types of maintenance

